A348937 a(n) = A003961(n) - A003415(n), where A003961 shifts the prime factorization of n one step towards larger primes, and A003415 gives the arithmetic derivative of n.
1, 2, 4, 5, 6, 10, 10, 15, 19, 14, 12, 29, 16, 24, 27, 49, 18, 54, 22, 39, 45, 26, 28, 91, 39, 36, 98, 67, 30, 74, 36, 163, 51, 38, 65, 165, 40, 48, 69, 121, 42, 124, 46, 69, 136, 62, 52, 293, 107, 102, 75, 97, 58, 294, 75, 205, 93, 62, 60, 223, 66, 78, 224, 537, 101, 134, 70, 99, 119, 172, 72, 519, 78, 84, 190, 127
Offset: 1
Keywords
Links
Programs
-
Mathematica
f1[p_, e_] := e/p; f2[p_, e_] := NextPrime[p]^e; a[n_] := Times @@ f2 @@@ (f = FactorInteger[n]) - n * Plus @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A348937(n) = (A003961(n) - A003415(n));