A348940 a(n) = gcd(n, A326042(n)), where A326042 is multiplicative function A064989(sigma(A003961(n))).
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 11, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 6, 1, 4, 1
Offset: 1
Keywords
Links
Programs
-
Mathematica
f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s[n_] := Times @@ f1 @@@ FactorInteger[n]; f[p_, e_] := s[((q = NextPrime[p])^(e + 1) - 1)/(q - 1)]; s2[1] = 1; s2[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := GCD[n, s2[n]]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
-
PARI
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A326042(n) = A064989(sigma(A003961(n))); A348940(n) = gcd(n, A326042(n));