cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348943 Odd numbers k for which A348942(A064989(k)) = 1.

Original entry on oeis.org

1, 3, 7, 15, 21, 31, 33, 69, 91, 93, 105, 127, 135, 141, 217, 231, 273, 285, 381, 465, 483, 573, 651, 775, 819, 861, 889, 945, 987, 1023, 1149, 1185, 1365, 1419, 1485, 1561, 1743, 1891, 1905, 1995, 2139, 2295, 2325, 2667, 2821, 3003, 3105, 3255, 3507, 3937, 4011, 4095, 4185, 4191, 4371, 4683, 5425, 5673, 6279, 6345
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Applying A064989 to these numbers and sorting the results to ascending order gives A355942, the positions of 1's in A348942.
From Antti Karttunen, Jul 23 2022: (Start)
Odd numbers k such that A064989(k) is a multiple of A350073(k) = A064989(sigma(k)).
If both x and y are terms and gcd(x, y) = 1, then x*y is also present.
(End)

Crossrefs

Cf. A003961, A064989, A326042, A348942, A355942, A355943 (characteristic function).
Cf. A000668, A046528 (subsequences).
Cf. also A349756.

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s[n_] := Times @@ f1 @@@ FactorInteger[n]; f[p_, e_] := s[((q = NextPrime[p])^(e + 1) - 1)/(q - 1)]; s2[1] = 1; s2[n_] := Times @@ f @@@ FactorInteger[n]; s3[n_] := (sn = s2[n])/GCD[n, sn]; Select[Range[1, 6500, 2], s3[s[#]] == 1 &] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A348942(n) = { my(u=A326042(n)); (u / gcd(n, u)); };
    isA348943(n) = ((n%2)&&(1==A348942(A064989(n))));
    
  • PARI
    \\ Alternatively, as:
    A355943(n) = ((n%2)&&!(A064989(n)%A064989(sigma(n))));
    isA348946(n) = A348943(n);

Formula

A348942(A064989(a(n))) = 1 for all n >= 1.