cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348945 a(n) = A348944(n) - sigma(n), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 0, 0, 75, 0, 0, 0, 6, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 18, 0, 24, 0, 0, 0, 0, 0, 0, 0, 270, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 0, 0, 108, 48, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 300, 0, 0, 0, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 0; a[n_] := (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2 - Times @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348945(n) = (A348944(n)-sigma(n));

Formula

a(n) = A348944(n) - A000203(n) = ((1/2) * (A003959(n)+A034448(n))) - A000203(n).
a(n) = (1/2) * (A348029(n)-A048146(n)).