A348958 Triangular array read by rows. T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)(n-k-1)), n>=0, 0<=k<=n.
1, 1, 1, 4, 6, 6, 64, 112, 168, 168, 4096, 7680, 13440, 20160, 20160, 1048576, 2031616, 3809280, 6666240, 9999360, 9999360, 1073741824, 2113929216, 4095737856, 7679508480, 13439139840, 20158709760, 20158709760, 4398046511104, 8727373545472, 17182016667648, 33290157293568, 62419044925440, 109233328619520, 163849992929280, 163849992929280
Offset: 0
Examples
Triangle begins: 1, 1, 1, 4, 6, 6, 64, 112, 168, 168, 4096, 7680, 13440, 20160, 20160, 1048576, 2031616, 3809280, 6666240, 9999360, 9999360
Programs
-
Mathematica
R[n_, d_] := Product[q^n - q^i, {i, 0, n - 1}]/Product[q^(n - d) - q^i, {i, 0, n - d - 1}];Table[Table[R[n, d] q^((n - d) (n - d - 1)), {d, 0, n}], {n, 0,10}] // Grid
Formula
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = f(x)*g(y*x) where f(x) = Sum_{n>=0} q^(n^2-n)*x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 02 2025
Comments