cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348958 Triangular array read by rows. T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)(n-k-1)), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 6, 6, 64, 112, 168, 168, 4096, 7680, 13440, 20160, 20160, 1048576, 2031616, 3809280, 6666240, 9999360, 9999360, 1073741824, 2113929216, 4095737856, 7679508480, 13439139840, 20158709760, 20158709760, 4398046511104, 8727373545472, 17182016667648, 33290157293568, 62419044925440, 109233328619520, 163849992929280, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, Nov 04 2021

Keywords

Comments

Let ~ be the equivalence relation on the set of n X n matrices over GF(2) defined by A ~ B if and only if the dimension of the image of A^n is equal to the dimension of the image of B^n. Let A be a recurrent matrix (Cf A348622) of rank k. Then T(n,k) is the size of the equivalence class containing A.
Let X_n be the random variable that assigns to each n X n matrix A over GF(q) the value j = nullity(A^n). Then limit as n->oo of P(X_n = j) = Product_{i>=1}(1 - 1/q^i)*q^(j^2-j)/|GL_j(F_q)|. - Geoffrey Critzer, Jan 02 2025

Examples

			Triangle begins:
  1,
  1,       1,
  4,       6,       6,
  64,      112,     168,     168,
  4096,    7680,    13440,   20160,   20160,
  1048576, 2031616, 3809280, 6666240, 9999360, 9999360
		

Crossrefs

Cf. A348622, A002884 (main diagonal), A053763 (column k=0).

Programs

  • Mathematica
    R[n_, d_] := Product[q^n - q^i, {i, 0, n - 1}]/Product[q^(n - d) - q^i, {i, 0, n - d - 1}];Table[Table[R[n, d] q^((n - d) (n - d - 1)), {d, 0, n}], {n, 0,10}] // Grid

Formula

T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)*(n-k-1)).
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = f(x)*g(y*x) where f(x) = Sum_{n>=0} q^(n^2-n)*x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 02 2025