A348974 Denominator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.
1, 1, 1, 9, 1, 12, 1, 27, 16, 18, 1, 9, 1, 24, 24, 27, 1, 16, 1, 27, 32, 36, 1, 27, 36, 42, 32, 6, 1, 72, 1, 243, 48, 54, 48, 3, 1, 60, 56, 3, 1, 96, 1, 27, 8, 72, 1, 81, 64, 108, 72, 7, 1, 64, 72, 54, 80, 90, 1, 27, 1, 96, 64, 729, 84, 144, 1, 81, 96, 48, 1, 36, 1, 114, 72, 15, 96, 168, 1, 243, 256, 126, 1, 18, 108
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Denominator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; A348974(n) = { my(s=A003959(n)); (s/gcd(s,(n+A003415(n)))); };