cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348975 a(n) = A003415(n) + A003958(n) - n, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 5, 1, 1, 0, 6, 0, 1, 1, 17, 0, 7, 0, 8, 1, 1, 0, 22, 1, 1, 8, 10, 0, 9, 0, 49, 1, 1, 1, 28, 0, 1, 1, 32, 0, 11, 0, 14, 10, 1, 0, 66, 1, 11, 1, 16, 0, 35, 1, 42, 1, 1, 0, 40, 0, 1, 12, 129, 1, 15, 0, 20, 1, 13, 0, 88, 0, 1, 12, 22, 1, 17, 0, 100, 43, 1, 0, 52, 1, 1, 1, 62, 0, 49, 1, 26, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

No negative terms. See comments in A322582.
This is the difference between the arithmetic derivative of n [= A003415(n)] and its guaranteed lower bound A322582(n) [= n - A003958(n)].

Crossrefs

Cf. also A348970 for the corresponding difference from a guaranteed upper bound.

Programs

  • Mathematica
    MapAt[# + 1 &, Array[If[# < 2, 0, # Total[#2/#1 & @@@ #2]] + Times @@ Map[(#1 - 1)^#2 & @@ # &, #2] - #1 & @@ {#, FactorInteger[#]} &, 95], 1] (* Michael De Vlieger, Mar 15 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348975(n) = (A003415(n) - A322582(n));

Formula

a(n) = A003415(n) - A322582(n).
a(n) = A003958(n) + A168036(n).