cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348978 Numerator of ratio A332993(n) / sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 8, 1, 11, 1, 11, 7, 1, 1, 31, 1, 6, 29, 17, 1, 23, 1, 20, 1, 25, 1, 17, 1, 1, 15, 26, 43, 67, 1, 29, 53, 38, 1, 71, 1, 13, 11, 35, 1, 47, 1, 27, 23, 46, 1, 47, 67, 53, 77, 44, 1, 37, 1, 47, 23, 1, 79, 37, 1, 20, 31, 113, 1, 139, 1, 56, 53, 67, 89, 131, 1, 26, 1, 62, 1, 155, 103, 65, 39, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

Ratio A332993(n) / sigma(n) tells how large proportion of the divisor sum we obtain if we sum just those divisors of n that can be obtained by repeatedly taking the largest proper divisor (of previous such divisor, starting from n, which is included in the sum), up to and including the terminal 1. Pair a(n) / A348979(n) shows the ratio in the lowest terms: 1/1, 1/1, 1/1, 1/1, 1/1, 5/6, 1/1, 1/1, 1/1, 8/9, 1/1, 11/14, 1/1, 11/12, 7/8, 1/1, 1/1, 31/39, 1/1, 6/7, 29/32, 17/18, 1/1, 23/30, etc. The ratio is 1 for all powers of primes (A000961).

Crossrefs

Cf. A000203, A000961, A332993, A333783, A348977, A348979 (denominators).
Cf. also A348988, A348989.

Programs

  • Mathematica
    f[n_] := n/FactorInteger[n][[1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := Numerator[g[n]/DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A332993(n) = if(1==n,n,n + A332993(n/vecmin(factor(n)[,1])));
    A348978(n) = { my(u=A332993(n)); (u/gcd(sigma(n), u)); };

Formula

a(n) = A332993(n) / A348977(n) = A332993(n) / gcd(A000203(n), A332993(n)).

A348989 Denominator of A332994(n) / sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 18, 1, 28, 1, 24, 24, 1, 1, 13, 1, 14, 32, 36, 1, 20, 1, 42, 1, 8, 1, 24, 1, 1, 48, 54, 48, 91, 1, 60, 56, 18, 1, 32, 1, 28, 39, 72, 1, 124, 1, 31, 72, 98, 1, 40, 72, 120, 80, 90, 1, 168, 1, 96, 26, 1, 84, 48, 1, 42, 96, 144, 1, 65, 1, 114, 62, 140, 96, 56, 1, 62, 1, 126, 1, 224, 108, 132, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

See comments in A348988.

Crossrefs

Cf. A000203, A332994, A333784, A348987, A348988 (numerators).
Cf. also A348978, A348979.

Programs

  • Mathematica
    f[n_] := n/FactorInteger[n][[-1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := Denominator[g[n]/DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A332994(n) = if(1==n,n,n + A332994(n/vecmax(factor(n)[,1])));
    A348989(n) = { my(s=sigma(n)); (s/gcd(s, A332994(n))); };

Formula

a(n) = A000203(n) / A348987(n) = A000203(n) / gcd(A000203(n), A332994(n)).

A348977 a(n) = gcd(sigma(n), A332993(n)).

Original entry on oeis.org

1, 3, 4, 7, 6, 2, 8, 15, 13, 2, 12, 2, 14, 2, 3, 31, 18, 1, 20, 6, 1, 2, 24, 2, 31, 2, 40, 2, 30, 3, 32, 63, 3, 2, 1, 1, 38, 2, 1, 2, 42, 1, 44, 6, 6, 2, 48, 2, 57, 3, 3, 2, 54, 2, 1, 2, 1, 2, 60, 3, 62, 2, 4, 127, 1, 3, 68, 6, 3, 1, 72, 1, 74, 2, 2, 2, 1, 1, 80, 6, 121, 2, 84, 1, 1, 2, 3, 2, 90, 78, 7, 6, 1, 2, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n/FactorInteger[n][[1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := GCD[g[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A332993(n) = if(1==n,n,n + A332993(n/vecmin(factor(n)[,1])));
    A348977(n) = gcd(sigma(n), A332993(n));

Formula

a(n) = gcd(A000203(n), A332993(n)).
a(n) = gcd(A000203(n), A333783(n)) = gcd(A332993(n), A333783(n)).
a(n) = A332993(n) / A348978(n) = A000203(n) / A348979(n).
Showing 1-3 of 3 results.