cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348980 a(n) = Sum_{d|n} d * A322582(n/d), where A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 5, 1, 9, 1, 17, 8, 13, 1, 37, 1, 17, 15, 49, 1, 51, 1, 57, 19, 25, 1, 117, 14, 29, 43, 77, 1, 105, 1, 129, 27, 37, 23, 191, 1, 41, 31, 185, 1, 141, 1, 117, 99, 49, 1, 325, 20, 117, 39, 137, 1, 237, 31, 253, 43, 61, 1, 405, 1, 65, 131, 321, 35, 213, 1, 177, 51, 209, 1, 579, 1, 77, 145, 197, 35, 249, 1, 521
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with the identity function, A000027.

Crossrefs

Cf. A000027, A003958, A038040, A322582, A348981 (Möbius transform), A348982, A348983, A349130.
Cf. also A347130, A349140.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, #*(n/# - s[n/#]) &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348980(n) = sumdiv(n,d,d*A322582(n/d));

Formula

a(n) = Sum_{d|n} d * A322582(n/d).
For all n >= 1, a(n) <= A347130(n) <= A349140(n).
a(n) = A038040(n) - A349130(n). - Antti Karttunen, Nov 14 2021