cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348986 Denominator of ratio sigma(n) / A325973(n), where A325973 is the arithmetic mean of {sum of squarefree divisors} and {sum of unitary divisors}.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 2, 7, 1, 1, 4, 1, 1, 1, 10, 1, 7, 1, 4, 1, 1, 1, 2, 16, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 31, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 10, 29, 16, 1, 4, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 7, 34, 1, 1, 1, 4, 1, 1, 1, 17, 1, 1, 16, 4, 1, 1, 1, 10, 43, 1, 1, 4, 1, 1, 1, 2, 1, 7, 1, 4, 1, 1, 1, 2, 1, 29, 7, 74, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

This is not multiplicative: a(4) = 4 and a(9) = 7, but a(36) = 31, not 28.

Crossrefs

Cf. also A348947.

Programs

  • Mathematica
    f1[p_, e_] := p + 1; f2[p_, e_] := p^e + 1; s[1] = 1; s[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/2; a[n_] := Denominator[DivisorSigma[1, n]/s[n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    A348986(n) = { my(am=A325973(n)); (am/gcd(sigma(n),am)); };

Formula

a(n) = A325973(n) / A348984(n) = A325973(n) / gcd(A000203(n), A325973(n)).