A348990 a(n) = n / gcd(n, A003961(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).
1, 2, 3, 4, 5, 2, 7, 8, 9, 10, 11, 4, 13, 14, 3, 16, 17, 6, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 2, 31, 32, 33, 34, 5, 4, 37, 38, 39, 40, 41, 14, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 18, 55, 56, 57, 58, 59, 4, 61, 62, 63, 64, 65, 22, 67, 68, 69, 10, 71, 8, 73, 74, 15, 76, 7, 26, 79, 80, 81, 82, 83, 28
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Array[#1/GCD[##] & @@ {#, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 84] (* Michael De Vlieger, Nov 11 2021 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A348990(n) = (n/gcd(n, A003961(n)));
Comments