cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349174 Odd numbers k for which gcd(k, A003961(k)) is equal to gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers k for which A322361(k) = A342671(k).
Odd numbers k for which A348994(k) = A349161(k).
Odd numbers k such that A319626(k) = A349164(k).
Odd terms of A336702 form a subsequence of this sequence. See also A349169.
Ratio of odd numbers residing in this sequence, vs. in A349175 seems to slowly decrease, but still apparently stays > 2 for a long time. E.g., for range 2 .. 2^28, it is 95302074/38915653 = 2.4489...

Crossrefs

Cf. A349175 (complement among the odd numbers).
Union of A349176 and A349177.

Programs

  • Mathematica
    Select[Range[1, 169, 2], GCD[#1, #3] == GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349174(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))==gcd(u,n));

A349176 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) > 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

135, 285, 435, 455, 855, 885, 1185, 1287, 1305, 1335, 1425, 1435, 1485, 1635, 2235, 2275, 2295, 2655, 2685, 2905, 2985, 3105, 3135, 3185, 3311, 3395, 3435, 3555, 3585, 4005, 4035, 4185, 4425, 4785, 4865, 4905, 4995, 5385, 5685, 5805, 5835, 5845, 5925, 6135, 6237, 6335, 6345, 6585, 6675, 6735, 7125, 7155, 7175, 7185
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Examples

			For n = 135 = 3^3 * 5, sigma(135) = 240 = 2^4 * 3 * 5, A003961(135) = 5^3 * 7 = 875, and gcd(135,875) = gcd(240,875) = 5, which is larger than 1, therefore 135 is included in the sequence.
		

Crossrefs

Intersection of A104210 and A349174, or equally, intersection of A349166 and A349174.
Subsequence of A372567.

Programs

  • Mathematica
    Select[Range[1, 7200, 2], And[#1/#2 == #1/#3, #2 > 1] & @@ {#3, GCD[#1, #3], GCD[#2, #3]} & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349176(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (t>1)&&(gcd(u,sigma(n))==t));

A348990 a(n) = n / gcd(n, A003961(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 10, 11, 4, 13, 14, 3, 16, 17, 6, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 2, 31, 32, 33, 34, 5, 4, 37, 38, 39, 40, 41, 14, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 18, 55, 56, 57, 58, 59, 4, 61, 62, 63, 64, 65, 22, 67, 68, 69, 10, 71, 8, 73, 74, 15, 76, 7, 26, 79, 80, 81, 82, 83, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Denominator of ratio A003961(n) / n. This ratio is fully multiplicative, and A348994(n) / a(n) = A319626(A003961(n)) / A319627(A003961(n)) gives it in its lowest terms.

Crossrefs

Cf. A000035, A000961, A002110, A003961, A319626, A319627, A319630 (fixed points), A322361, A349169 (where equal to A348992).
Cf. A348994 (numerators).

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {#, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 84] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348990(n) = (n/gcd(n, A003961(n)));

Formula

a(n) = n / A322361(n) = n / gcd(n, A003961(n)).
a(n) = A319627(A003961(n)).
For all odd numbers n, a(n) = A003961(A319627(n)).
For all n >= 1, A000035(A348990(n)) = A000035(n). [Preserves the parity]

A349177 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) = 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169, 173
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Comments

Odd numbers k for which k and A003961(k) are relatively prime, and also sigma(k) and A003961(k) are coprime.

Crossrefs

Subsequence of A349174 from this first differs by not having term 135 (see A349176).
Intersection of A319630 and A349174, or equally, intersection of A349165 and A349174.

Programs

  • Mathematica
    Select[Range[1, 173, 2], GCD[#1, #3] == GCD[#2, #3] == 1 & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349177(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (1==t)&&(gcd(u,sigma(n))==t));

A349175 Odd numbers k for which gcd(k, A003961(k)) <> gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

15, 27, 35, 45, 57, 65, 75, 77, 87, 99, 105, 143, 165, 171, 175, 177, 189, 195, 205, 221, 225, 231, 237, 245, 255, 261, 267, 297, 301, 315, 323, 325, 327, 345, 351, 375, 385, 399, 405, 415, 417, 429, 437, 447, 459, 465, 485, 495, 513, 525, 531, 537, 539, 555, 567, 585, 595, 597, 605, 609, 615, 621, 627, 629, 645
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers for which A348994(n) <> A349161(n).
Equally, odd numbers such that A319626(n) <> A349164(n).

Crossrefs

Cf. A349169, A349174 (complement among the odd numbers).

Programs

  • Mathematica
    Select[Range[1, 645, 2], GCD[#1, #3] != GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349175(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))!=gcd(u,n));
Showing 1-5 of 5 results.