cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348999 a(n) = A348929(A276086(n)), where A348929(n) = gcd(n, A003959(n)), A003959 is multiplicative with a(p^e) = (p+1)^e, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 1, 1, 6, 1, 6, 1, 2, 3, 6, 3, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 1, 6, 1, 6, 1, 2, 3, 6, 3, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 1, 6, 1, 6, 1, 2, 3, 6, 3, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 1, 6, 1, 6, 1, 2, 3, 6, 3, 18
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Comments

After each primorial number (A002110), the apparent periodicity grows more complex.

Crossrefs

Programs

  • PARI
    A348999(n) = { my(m1=1, m2=1, p=2); while(n, m1 *= (p^(n%p)); m2 *= ((1+p)^(n%p)); n = n\p; p = nextprime(1+p)); gcd(m1,m2); };

Formula

a(n) = A348929(A276086(n)).
a(n) = gcd(A276086(n), A348949(n)) = gcd(A276086(n), A348950(n)).