A349003 Decimal expansion of lim_{n->infinity} E(2*n, n)/n^(2*n), where E(n, x) is the n-th Euler polynomial.
2, 3, 8, 4, 0, 5, 8, 4, 4, 0, 4, 4, 2, 3, 5, 1, 1, 1, 8, 8, 0, 5, 4, 1, 7, 1, 7, 3, 9, 5, 2, 0, 6, 4, 0, 9, 5, 8, 7, 2, 3, 1, 4, 0, 2, 7, 4, 2, 0, 6, 3, 4, 4, 8, 4, 0, 3, 1, 8, 9, 4, 9, 9, 8, 7, 8, 0, 4, 6, 7, 5, 5, 4, 2, 3, 3, 6, 1, 5, 1, 6, 5, 4, 1, 0, 5, 2, 4, 7, 8, 3, 2, 6, 3, 2, 3, 2, 8, 5, 5, 7, 8, 0, 9, 7, 2
Offset: 0
Examples
0.238405844044235111880541717395206409587231402742063448403189499878046...
Links
- Eric Weisstein's World of Mathematics, Euler Polynomial.
Programs
-
Mathematica
$MaxExtraPrecision = 1000; funs[n_] := EulerE[2 n, n]/n^(2 n); Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[1000/m]] * j^(m - 1)/(j - 1)!/(m - j)!, {j, 1, m}], 110]], {m, 10, 100, 10}] RealDigits[2/(1 + E^2), 10, 110][[1]]
Formula
Equals 2/(1 + exp(2)).
Equals lim_{n->infinity} (HurwitzZeta(-2*n, n/2) - HurwitzZeta(-2*n, (n+1)/2)) * 2^(2*n+1) / n^(2*n).
Comments