cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073744 Decimal expansion of tanh(1).

Original entry on oeis.org

7, 6, 1, 5, 9, 4, 1, 5, 5, 9, 5, 5, 7, 6, 4, 8, 8, 8, 1, 1, 9, 4, 5, 8, 2, 8, 2, 6, 0, 4, 7, 9, 3, 5, 9, 0, 4, 1, 2, 7, 6, 8, 5, 9, 7, 2, 5, 7, 9, 3, 6, 5, 5, 1, 5, 9, 6, 8, 1, 0, 5, 0, 0, 1, 2, 1, 9, 5, 3, 2, 4, 4, 5, 7, 6, 6, 3, 8, 4, 8, 3, 4, 5, 8, 9, 4, 7, 5, 2, 1, 6, 7, 3, 6, 7, 6, 7, 1, 4, 4, 2, 1, 9, 0
Offset: 0

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

Also decimal expansion of tan(i)/i. - N. J. A. Sloane, Feb 12 2010
tanh(x) = (e^x - e^(-x)) / (e^x + e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			0.76159415595576488811945828260...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A004273 (continued fraction), A073747 (coth(1)=1/A073744), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)).

Programs

  • Mathematica
    RealDigits[Tanh[1], 10, 100][[1]] (* Amiram Eldar, Aug 19 2020 *)
  • PARI
    tanh(1)

Formula

Equals Sum_{k>=1} bernoulli(2*k)*2^(2*k)*(2^(2*k)-1)/(2*k)!, where bernoulli(k) = A027641(k)/A027642(k) is the k-th Bernoulli number. - Amiram Eldar, Aug 19 2020
Equal to the continued fraction [0;1,3,5,...,2n-1,...]. - Thomas Ordowski, Oct 22 2024
Equals 1-A349003. - Hugo Pfoertner, Oct 22 2024

A349004 Decimal expansion of lim_{n->infinity} B(2*n, n)/n^(2*n), where B(n, x) is the n-th Bernoulli polynomial.

Original entry on oeis.org

3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9, 4, 7
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 05 2021

Keywords

Comments

Asymptotic expansion: B(2*n,n) / n^(2*n) ~ c0 + c1/n + c2/n^2 + ..., where
c0 = A349004
c1 = -0.11332842437985451266688985513574347679739396134203607414578687657...
c2 = -0.02939332883129837328682967905833985820907100422772261310141242364...
In general, for k>=1, B(k*n,n) / n^(k*n) ~ k/(exp(k) - 1).

Examples

			0.313035285499331303636161246930847832912013941240452655543152967567084...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; funs[n_] := BernoulliB[2 n, n]/n^(2 n); Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[1000/m]] * j^(m - 1)/(j - 1)!/(m - j)!, {j, 1, m}], 110]], {m, 10, 100, 10}]
    RealDigits[2/(E^2 - 1), 10, 110][[1]]

Formula

Equals 2/(exp(2)-1).
From Peter Luschny, Nov 05 2021: (Start)
Equals lim_{n->oo} (1/n) * Sum_{k=0..n-1} B(2*n, 1 + k/n) by J. L. Raabe's multiplication theorem.
Equals -2 * lim_{n->oo} HurwitzZeta(1 - 2*n, n) * n^(1 - 2*n). (End)
Equals A073747 - 1. - Alois P. Heinz, Nov 05 2021
Equals Sum_{k>=1} tanh(1/2^k)/2^k (Bell, 2018). - Amiram Eldar, Apr 12 2022

A292782 a(n) = E(2n,n)/2, where E(n,x) is the Euler polynomial.

Original entry on oeis.org

0, 1, 63, 6306, 990550, 227890755, 72524317341, 30560156566660, 16483798503292716, 11080974333713379525, 9085235508141504416155, 8924963654575108415598246, 10349560274697013067017980738, 13989200573862071630368836403591, 21802322447828101388917112243376825
Offset: 1

Views

Author

Vladimir Shevelev, Sep 23 2017

Keywords

Comments

Conjecture. For n >= 2, a(n) is divisible by n(n-1)/2, moreover, for odd n, a(n) is divisible by n^2(n-1)/2.

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

Crossrefs

Programs

Formula

a(n) = (-1)^n*(1^(2*n) - 2^(2*n) + ... +(-1)^n*(n-1)^(2*n)).
a(n) ~ c * n^(2*n), where c = A349003/2 = 1/(1 + exp(2)) = 0.1192029220221175559402708586976... - Vaclav Kotesovec, Nov 05 2021

Extensions

More terms from Peter J. C. Moses, Sep 23 2017
Showing 1-3 of 3 results.