cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A349006 a(1) = 1; for n > 1, a(n) is the smallest number m such that sigma(m) = tau(m)^n or 0 if no such m exists.

Original entry on oeis.org

1, 3, 7, 217, 31, 3937, 127, 57337, 253921, 917497, 3670009, 16252897, 8191, 61079603913818329, 1073602561, 4294434817, 131071, 66571993057, 524287, 1208766717309082486038529, 9222228542614937599, 17590038552577, 500367932999371587367, 281472829095937, 1125897758834689
Offset: 1

Views

Author

Jaroslav Krizek, Nov 05 2021

Keywords

Comments

See A051281 for numbers m such that sigma(m) = tau(m)^k where k = integer.
a(n) = 0 for n = 76, 81, ...

Examples

			a(4) = 217 because 217 is the smallest number m such that sigma(m) = tau(m)^4; sigma(217) = 256 = tau(217)^4  = 4^4.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A051281, A334455, A349007.

Programs

  • Magma
    [1] cat [Min([m: m in[2..10^6] | &+Divisors(m) eq #Divisors(m)^n]): n in [2..10]]
  • Mathematica
    Table[Block[{m = n}, While[#2 != #1^n & @@ DivisorSigma[{0, 1}, m], m++]; m], {n, 10}] (* Michael De Vlieger, Nov 05 2021 *)

A349838 Irregular table read by rows; the n-th row contains in ascending order the integers m > 1 such that sigma(m) = tau(m)^n; the first row contains 1.

Original entry on oeis.org

1, 3, 7, 217, 2667, 31, 889, 27559, 3937, 172011, 677207307, 127, 1777447, 225735769, 57337, 11010027, 12189603, 3612185689, 698915267211, 253921, 113770279, 116522119, 29587412978599, 917497, 1040257, 931892355289, 954432676729, 811637999283747
Offset: 1

Views

Author

Rémy Sigrist, Dec 01 2021

Keywords

Comments

The n-th row has A349837(n) terms.
As a flat sequence, this is a permutation of A051281.

Examples

			Table begins:
    1;
    3;
    7;
    217, 2667;
    31, 889, 27559;
    3937, 172011, 677207307;
    127, 1777447, 225735769;
    57337, 11010027, 12189603, 3612185689, 698915267211;
    253921, 113770279, 116522119, 29587412978599;
    917497, 1040257, 931892355289, 954432676729, 811637999283747;
    ...
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = A349006(n) when A349837(n) > 0.
T(n, A349837(n)) = A349007(n) when A349837(n) > 0.
A334455(T(n, k)) = n.

A349837 a(n) is the number of integers m > 1 such that sigma(m) = tau(m)^n, with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 3, 5, 4, 5, 5, 7, 9, 5, 6, 2, 7, 7, 5, 6, 5, 9, 6, 11, 6, 12, 10, 12, 14, 11, 13, 21, 16, 20, 19, 20, 19, 21, 21, 19, 17, 21, 18, 22, 19, 22, 20, 17, 17, 15, 23, 14, 17, 12, 16, 9, 11, 12, 10, 9, 9, 7, 10, 3, 8, 7, 6, 3, 7, 4, 4, 4, 3, 3, 2
Offset: 1

Views

Author

Rémy Sigrist, Dec 01 2021

Keywords

Comments

a(n) is the number of integers m such that A334455(m) = n.
Conjecture: a(n) > 0 except for n = 76 and n = 81.

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A334455, A349006, A349007, A349838.

Programs

  • PARI
    See Links section.

A343945 a(1) = 1; for n >= 2, a(n) = floor(log(sigma(n)) / log(tau(n))).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 1, 3, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 5, 2, 5, 2, 2, 3, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 2, 5, 3, 2, 2, 3, 2, 6, 2, 3, 2, 6, 2, 6, 3, 2, 2, 3, 2, 6, 2, 2, 3, 6, 2, 3, 3, 3
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2021

Keywords

Comments

See A051281 for numbers m such that sigma(m) = tau(m)^k where k = integer, i.e., numbers m such that floor(log(sigma(m)) / log(tau(m))) = log(sigma(m)) / log(tau(m)).

Examples

			a(6) = floor(log(sigma(6)) / log(tau(6))) = floor(log(12) / log(4)) = floor(1.792481...) = 1.
a(7) = floor(log(sigma(7)) / log(tau(7))) = floor(log(8) / log(2)) = floor(3) = 3.
		

Crossrefs

Programs

  • Magma
    [1] cat [Floor(Log(&+Divisors(n)) / Log(#Divisors(n))): n in [2..100]]
  • Mathematica
    a[1] = 1; a[n_] := Floor[Log @@ DivisorSigma[{0, 1}, n]]; Array[a, 100] (* Amiram Eldar, Dec 16 2021 *)
Showing 1-4 of 4 results.