cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349014 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x) / (1 - x) + x^2 * A(x)^2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 111, 270, 663, 1656, 4174, 10636, 27308, 70651, 183902, 481436, 1266515, 3346793, 8879116, 23642034, 63156917, 169222939, 454660940, 1224650739, 3306338583, 8945780742, 24252558183, 65872671839, 179228552638, 488443704486
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1 + x + x^2 A[x]/(1 - x) + x^2 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[a[k] (1 + a[n - k - 2]), {k, 0, n - 2}]; Table[a[n], {n, 0, 30}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} a(k) * (1 + a(n-k-2)).
a(n) ~ sqrt(1/r + (2-r)*s/(1-r)^2 + 2*s^2) / (2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.3495518575342322867499973927570340375314361958565... and s = 3.323404276086477625771682790702806844309937221726... are real roots of the system of equations 1 + r + r^2*s*(1/(1-r) + s) = s, r^2*(1/(1-r) + 2*s) = 1. - Vaclav Kotesovec, Nov 06 2021