cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349037 G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(-4*x)).

Original entry on oeis.org

1, 1, 2, -1, 29, 116, 7701, -103563, 31343898, 1759289595, 2057705197793, -457070362176172, 2156748187140412361, 1921405067209313680505, 36188075164863127910696914, -128870933294125665748520896793, 9713904752944734908048841134573557
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[-4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[(-4)^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-2} (-4)^k * a(k) * a(n-k-2).