A349040 a(n) is the X-coordinate of the n-th point of the terdragon curve; sequence A349041 gives Y-coordinates.
0, 1, 0, 1, 0, 0, -1, 0, -1, 0, -1, -1, -2, -2, -1, -1, -2, -2, -3, -2, -3, -2, -3, -3, -4, -3, -4, -3, -4, -4, -5, -5, -4, -4, -5, -5, -6, -6, -5, -5, -4, -5, -4, -4, -3, -3, -4, -4, -5, -5, -4, -4, -5, -5, -6, -5, -6, -5, -6, -6, -7, -6, -7, -6, -7, -7, -8
Offset: 0
Keywords
Examples
The terdragon curve starts (on a hexagonal lattice) as follows: +-----+ 8\ 9 \ +-----+7 6\ /4\ \5/ \ +-----+ 2\ 3 \ +-----+ 0 1 - so a(0) = a(2) = a(4) = a(5) = a(7) = a(9) = 0, a(1) = a(3) = 1, a(6) = a(8) = -1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6561
- Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, Selected Papers on Fun and Games, 2011, pages 571-614. See section 5 delta(n) for zeta = third root of unity.
- Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. [Cached copy, with permission]
- Kevin Ryde, Iterations of the Terdragon Curve, see index "point".
- Rémy Sigrist, Colored representation of the first 1 + 3^11 points of the terdragon curve (where the hue is function of the number of steps from the origin)
- Rémy Sigrist, PARI program for A349040
- Wikipedia, Terdragon
- Index entries for sequences related to coordinates of 2D curves
Programs
-
PARI
See Links section.
Comments