A349059 Number of weakly alternating ordered factorizations of n.
1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 18, 2, 3, 4, 8, 1, 11, 1, 16, 3, 3, 3, 22, 1, 3, 3, 18, 1, 11, 1, 8, 8, 3, 1, 38, 2, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 32, 1, 3, 8, 28, 3, 11, 1, 8, 3, 11, 1, 56, 1, 3, 8, 8, 3, 11, 1, 38, 8, 3
Offset: 1
Keywords
Examples
The ordered factorizations for n = 2, 4, 6, 8, 12, 24, 30: (2) (4) (6) (8) (12) (24) (30) (2*2) (2*3) (2*4) (2*6) (3*8) (5*6) (3*2) (4*2) (3*4) (4*6) (6*5) (2*2*2) (4*3) (6*4) (10*3) (6*2) (8*3) (15*2) (2*2*3) (12*2) (2*15) (2*3*2) (2*12) (3*10) (3*2*2) (2*2*6) (2*5*3) (2*4*3) (3*2*5) (2*6*2) (3*5*2) (3*2*4) (5*2*3) (3*4*2) (4*2*3) (6*2*2) (2*2*2*3) (2*2*3*2) (2*3*2*2) (3*2*2*2)
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]], {m,1,Length[y]-1}]; Table[Length[Select[Join@@Permutations/@facs[n], whkQ[#]||whkQ[-#]&]],{n,100}]
Formula
a(2^n) = A349052(n).
Comments