cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349072 a(n) = T(n, 3*n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 3, 71, 2889, 164737, 12082575, 1083358151, 114812765781, 14040770918401, 1946133989077851, 301491888156044999, 51624542295308885793, 9681761035138427706241, 1973656779656041723763559, 434528364117341972641648967, 102755067271708508826774929325
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, T(n, k*n) ~ 2^(n-1) * k^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, 3*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 1, 3*n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevt
    def A349072(n): return chebyshevt(n,3*n) # Chai Wah Wu, Nov 08 2023

Formula

a(n) = cosh(n*arccosh(3*n)).
a(n) = ((3*n + sqrt(9*n^2-1))^n + (3*n - sqrt(9*n^2-1))^n)/2.
a(n) ~ 2^(n-1) * 3^n * n^n.