cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349079 Numbers k such that there exists m, 1 <= m <= k with the property that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

1, 2, 4, 8, 12, 14, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 60, 62, 64, 68, 72, 76, 80, 84, 88, 92, 96, 98, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 142, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 194, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 1

Views

Author

Bernard Schott, Nov 07 2021

Keywords

Comments

If k is a term, then A348692(k) lists integers m such that k$ / m! is a square; and for each k, there exist only one (A349080) or two (A349081) such integers m.
See A348692 for further information, links and references about Olympiads.
Except for 1, all terms are even, and, when k is such an even term, corresponding m belong(s) to {k/2 - 2, k/2 - 1, k/2, k/2 + 1, k/2 + 2}.
This sequence is the union of {1} and of three infinite and disjoint subsequences:
-> A008586, so every positive multiple of 4 is a term and in this case, for k=4*q, (k$)/(k/2)! = ( 2^(k/4) * Product_{j=1..k/2} ((2j-1)!) )^2 (see example 4).
-> A060626, so every k = 4*q^2 - 2 (q >= 1) is a term (see examples 2 and 14).
-> 2*A055792 = {k = 2q^2 with q>1 in A001541} = {18, 578, ...} (see example 18).

Examples

			2 is a term as 2$ / 2! = 1^2.
4 is a term as 4$ / 2! = 12^2.
14 is a term as 14$ / 8! = 1309248519599593818685440000000^2 and also 14$ / 9! = 436416173199864606228480000000^2.
18 is a term as 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2.
		

Crossrefs

Programs

  • Mathematica
    supfact[n_] := supfact[n] = BarnesG[n + 2]; fact[n_] := fact[n] = n!; q[k_] := AnyTrue[Range[k], IntegerQ @ Sqrt[supfact[k]/fact[#]] &]; Select[Range[230], q] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    f(n) = prod(k=2, n, k!); \\ A000178
    isok(k) = my(sf=f(k)); for (m=1, k, if (issquare(sf/m!), return(1))); \\ Michel Marcus, Nov 08 2021