cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349081 Numbers k for which there exist two integers m with 1 <= m_1 < m_2 <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

8, 14, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 574, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872, 4048, 4232, 4416, 4608, 4800, 5000
Offset: 1

Views

Author

Bernard Schott, Dec 01 2021

Keywords

Comments

This sequence is the union of three infinite and disjoint subsequences:
-> Numbers k = 8t^2 > 0 (A139098); for these numbers, m_1 = k/2 - 1 = 4t^2-1 < m_2 = k/2 = 4t^2 (see example for k = 8).
-> Numbers k = 8t*(t+1) (A035008); for these numbers, m_1 = k/2 = 4t(t+1) < m_2 = k/2 + 1 = (2t+1)^2 (see example for k = 16).
-> Even numbers of the form 2t^2-4, t>1 in A001541 (A349766); for these numbers, m_1 = k/2 + 1 = t^2 - 1 < m_2 = k/2 + 2 = t^2 (see example for k = 14).
See A348692 for further information.

Examples

			For k = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For k = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For k = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
		

Crossrefs

Subsequence of A349079.

Programs

  • Mathematica
    Do[j=0;l=1;g=BarnesG[k+2];While[j<2&&l<=k,If[IntegerQ@Sqrt[g/l!],j++];l++];If[j==2,Print@k],{k,5000}] (* Giorgos Kalogeropoulos, Dec 02 2021 *)
  • PARI
    sf(n) = prod(k=2, n, k!); \\ A000178
    isok(m) = if (!(m%2), my(s=sf(m)); #select(issquare, vector(4, k, s/(m/2+k-2)!), 1) == 2); \\ Michel Marcus, Dec 04 2021