cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349082 The number of two-term Egyptian fractions of rational numbers, x/y, 0 < x/y < 1, ordered as below. The sequence is the number of (p,q) pairs such that x/y = 1/p + 1/q where p and q are integers with p < q.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 3, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0, 4, 1, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 7, 4, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 1, 3, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 4, 4, 1, 3, 1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 4, 3, 2, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Jud McCranie, Nov 07 2021

Keywords

Comments

The sequence are the terms in a triangle, where the rows correspond to the denominator of the rational number (starting with row 2, column 1) and the columns correspond to the numerators:
x=1 2 3 4 5 rationals x/y:
Row 1 (y=2): 1 1/2
Row 2 (y=3): 1, 1 1/3, 2/3
Row 3 (y=4): 2, 1, 1 1/4, 2/4, 3/4
Row 4 (y=5): 1, 1, 1, 0 1/5, 2/5, 3/5, 4/5
Row 5 (y=6): 4, 1, 1, 1, 1 1/6, 2/6, 3/6, 4/6, 5/6
Alternatively, order the rational numbers, x/y, 0 < x/y < 1, in this order: 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ... For example, in this ordering, the sixth rational number is 3/4. The numerators of the n-th rational number are A002260(n) and the denominators are A003057(n).
A018892 is a subsequence (for x/y = 1/n).

Examples

			The fourth rational number is 1/4, 1/4 = 1/5 + 1/20 = 1/6 + 1/12, so a(4)=2.
		

Crossrefs

Columns: A018892 (x=1), A046079 (x=2).