cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349093 a(n) is the smallest nonprime number m (m = A018252(t)) such that n divides the product P(t) of all nonprime numbers up to and including m (P(t) = A036691(t-1)).

Original entry on oeis.org

1, 4, 6, 4, 10, 6, 14, 6, 9, 10, 22, 6, 26, 14, 10, 8, 34, 9, 38, 10, 14, 22, 46, 6, 15, 26, 9, 14, 58, 10, 62, 8, 22, 34, 14, 9, 74, 38, 26, 10, 82, 14, 86, 22, 10, 46, 94, 8, 21, 15, 34, 26, 106, 9, 22, 14, 38, 58
Offset: 1

Views

Author

Lechoslaw Ratajczak, Mar 25 2022

Keywords

Comments

a(n) >= 2*gpf(n) for n > 1, where gpf(n) denotes the greatest prime factor of n (A006530(n)).
Conjecture: the equation a(n) = a(n+1) has no solutions. This holds up to at least n = 10^7.
Consecutive solutions of the equation a(n) = 2*K(n) (where K(n) is the Kempner number A002034(n)) are consecutive terms of A048839.

Examples

			a(15) = 10 because:
15 does not divide 1=A036691(0)=1, 1*4=A036691(1)=4, 1*4*6=A036691(2)=24, 1*4*6*8=A036691(3)=192, 1*4*6*8*9=A036691(4)=1728 and does divide 1*4*6*8*9*10=A036691(5)=17280.
		

Crossrefs

Programs

  • Maxima
    f(p,k):=(z:2, for m:2 while -1+sum(floor((p*m)/(p^t)),t,1,m)
    				

Formula

a(p) = 2*p for prime p.
a(p_1*p_2*...*p_u) = 2*p_u, where p_i's are distinct primes and p_1 < p_2 < ... < p_u.
a(n) where n is factored as n = p_1^k_1*p_2^k_2*...*p_u^k_u is given by a(n) = max( a(p_1^k_1), a(p_2^k_2), ..., a(p_u^k_u) ), where a(p_i^k_i) = w*p_i and w is the smallest m >= 2 satisfying the inequality:
-1 + Sum_{t=1..m} floor((m*p_i)/(p_i)^t) >= k_i.