cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A352620 Irregular triangle read by rows which are rows of successive n X n matrices M(n) with entries M(n)[i,j] = i*j mod n+1.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 1, 2, 3, 4, 2, 4, 1, 3, 3, 1, 4, 2, 4, 3, 2, 1, 1, 2, 3, 4, 5, 2, 4, 0, 2, 4, 3, 0, 3, 0, 3, 4, 2, 0, 4, 2, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 2, 4, 6, 1, 3, 5, 3, 6, 2, 5, 1, 4, 4, 1, 5, 2, 6, 3, 5, 3, 1, 6, 4, 2, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Luca Onnis, Mar 24 2022

Keywords

Comments

Each matrix represents all possible products between the elements of Z_(n+1), where Z_k is the ring of integers mod k.
Those matrices are symmetric.
The first row is equal to the first column which is equal to 1,2,...,n.

Examples

			Matrices begin:
  n=1:  1,
  n=2:  1, 2,
        2, 1,
  n=3:  1, 2, 3,
        2, 0, 2,
        3, 2, 1,
  n=4:  1, 2, 3, 4,
        2, 4, 1, 3,
        3, 1, 4, 2,
        4, 3, 2, 1;
For example, the 6 X 6 matrix generated by Z_7 is the following:
  1 2 3 4 5 6
  2 4 6 1 3 5
  3 6 2 5 1 4
  4 1 5 2 6 3
  5 3 1 6 4 2
  6 5 4 3 2 1
The trace of this matrix is 14 = A048153(7).
		

Crossrefs

Cf. A048153 (traces), A349099 (permanents), A160255 (sum entries), A088922 (ranks).
Cf. A074930.

Programs

  • Mathematica
    Flatten[Table[Table[Mod[k*Table[i, {i, 1, p - 1}], p], {k, 1, p - 1}], {p, 1, 10}]]
Showing 1-1 of 1 results.