A349110 Powerful numbers (A001694) whose sum of aliquot powerful divisors (including 1) is larger than 1 and is also powerful.
128, 729, 900, 4900, 10404, 17424, 24336, 52900, 78400, 79524, 81796, 297025, 304175, 304200, 313600, 346921, 417316, 532900, 1612900, 1656200, 1960000, 2238016, 2464900, 3129361, 3232804, 3334276, 3496900, 3534400, 3992004, 6056521, 6974881, 9245000, 10672200
Offset: 1
Keywords
Examples
128 = 2^7 is a term since it is powerful and the sum of its aliquot powerful divisors, A183097(128) - 128 = 1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
Programs
-
Mathematica
powQ[n_] := AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n] - n]; Select[Range[1.1*10^7], q]
-
PARI
isok(n) = my(s); ispowerful(n) && (s=sumdiv(n, d, if (d
1) && ispowerful(s); \\ Michel Marcus, Nov 08 2021
Comments