A349120 Primitive Pythagorean triples [a, b, c] in lexicographic order with a < b < c such that [w(a), w(b), w(c)] is also a primitive Pythagorean triple, where w(n) is the binary weight of n.
11, 60, 61, 19, 180, 181, 25, 312, 313, 35, 612, 613, 41, 840, 841, 47, 1104, 1105, 49, 1200, 1201, 52, 165, 173, 57, 176, 185, 67, 2244, 2245, 97, 4704, 4705, 104, 153, 185, 105, 208, 233, 105, 608, 617, 131, 8580, 8581, 133, 156, 205, 145, 408, 433, 145, 10512, 10513, 165, 532, 557, 181, 16380, 16381, 193, 18624, 18625
Offset: 1
Examples
[11, 60, 61] is a primitive Pythagorean triple, and [w(11), w(60), w(61)] = [3, 4, 5] is also a primitive Pythagorean triple, thus 11, 60, and 61 are members.
Programs
-
PARI
ppt(a) = {my(L=List(), b, c, d, g); fordiv(a^2, d, g=a^2\d; if(d<=g && (d+g)%2==0, c=(d+g)\2; b=g-c; if(aA263728 isok(t) = {my(ht = vecsort(apply(hammingweight, t))); (ht[1]^2 + ht[2]^2 == ht[3]^2) && (gcd(ht)==1);} lista(nn) = {my(list=List()); for (n=1, nn, my(v = ppt(n)); if (#v, for (k=1, #v, if (isok(v[k]), listput(list, v[k]));););); Vec(list);} \\ Michel Marcus, Nov 10 2021