A349122 Inverse Möbius transform of A349128, where A349128(n) = phi(A064989(n)), A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and phi is Euler totient function.
1, 2, 2, 3, 3, 4, 5, 4, 4, 6, 7, 6, 11, 10, 6, 5, 13, 8, 17, 9, 10, 14, 19, 8, 9, 22, 8, 15, 23, 12, 29, 6, 14, 26, 15, 12, 31, 34, 22, 12, 37, 20, 41, 21, 12, 38, 43, 10, 25, 18, 26, 33, 47, 16, 21, 20, 34, 46, 53, 18, 59, 58, 20, 7, 33, 28, 61, 39, 38, 30, 67, 16, 71, 62, 18, 51, 35, 44, 73, 15, 16, 74, 79, 30, 39
Offset: 1
Links
Programs
-
Mathematica
f[p_, e_] := NextPrime[p, -1]^e; f[2, e_] := e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
-
PARI
A349128(n) = { my(f = factor(n), q); prod(i=1, #f~, if(2==f[i,1], 1, q = precprime(f[i,1]-1); (q-1)*(q^(f[i,2]-1)))); }; A349122(n) = sumdiv(n,d,A349128(d));
-
Python
from sympy import prevprime, factorint, prod def f(p, e): return e+1 if p == 2 else prevprime(p)**e def a(n): return prod(f(p, e) for p, e in factorint(n).items()) # Sebastian Karlsson, Nov 15 2021
Formula
a(n) = Sum_{d|n} A349128(d).
From Sebastian Karlsson, Nov 15 2021: (Start)
a(2*n-1) = A064989(2*n-1).
Multiplicative with a(2^e) = e + 1 and a(p^e) = prevprime(p)^e for odd primes p. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/9) * Product_{p prime > 2} ((p^2-p)/(p^2-prevprime(p))) = 0.2942719052..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022
Comments