A349128 a(n) = phi(A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and phi is Euler totient function.
1, 1, 1, 1, 2, 1, 4, 1, 2, 2, 6, 1, 10, 4, 2, 1, 12, 2, 16, 2, 4, 6, 18, 1, 6, 10, 4, 4, 22, 2, 28, 1, 6, 12, 8, 2, 30, 16, 10, 2, 36, 4, 40, 6, 4, 18, 42, 1, 20, 6, 12, 10, 46, 4, 12, 4, 16, 22, 52, 2, 58, 28, 8, 1, 20, 6, 60, 12, 18, 8, 66, 2, 70, 30, 6, 16, 24, 10, 72, 2, 8, 36, 78, 4, 24, 40, 22, 6, 82, 4, 40
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[p == 2, 1, Module[{q = NextPrime[p, -1]}, (q - 1)*q^(e - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
-
PARI
A349128(n) = { my(f = factor(n), q); prod(i=1, #f~, if(2==f[i,1], 1, q = precprime(f[i,1]-1); (q-1)*(q^(f[i,2]-1)))); };
Formula
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (q - 1)*q^(e-1), where q = prevprime(p), where prevprime is A151799.
For odd n, a(n) = A349127(n), for even n, a(n) = a(n/2).
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (64/(3*Pi^4)) / Product_{p prime > 2} (1+1/p-q(p)/p^2-q(p)/p^3) = 0.17889586..., where q(p) = prevprime(p) = A151799(p). - Amiram Eldar, Dec 24 2022
Comments