cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349130 a(n) = Sum_{d|n} d * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 13, 15, 19, 27, 21, 35, 25, 39, 45, 31, 33, 57, 37, 63, 65, 63, 45, 75, 61, 75, 65, 91, 57, 135, 61, 63, 105, 99, 117, 133, 73, 111, 125, 135, 81, 195, 85, 147, 171, 135, 93, 155, 127, 183, 165, 175, 105, 195, 189, 195, 185, 171, 117, 315, 121, 183, 247, 127, 225, 315, 133, 231, 225, 351, 141
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with the identity function, A000027.
Dirichlet convolution of sigma (A000203) with A003966.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e + 1) - (p - 1)^(e + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A349130(n) = sumdiv(n,d,d*A003958(n/d));

Formula

a(n) = Sum_{d|n} d * A003958(n/d).
a(n) = Sum_{d|n} A349131(d).
a(n) = Sum_{d|n} A000203(d) * A003966(n/d).
a(n) = A038040(n) - A348980(n).
For all n >= 1, a(n) <= A349129(n) <= A349170(n).
Multiplicative with a(p^e) = p^(e+1) - (p-1)^(e+1). - Amiram Eldar, Nov 09 2021