A349132 a(n) = Sum_{d|n} psi(d) * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and psi is Dedekind psi function, A001615.
1, 4, 6, 10, 10, 24, 14, 22, 24, 40, 22, 60, 26, 56, 60, 46, 34, 96, 38, 100, 84, 88, 46, 132, 70, 104, 84, 140, 58, 240, 62, 94, 132, 136, 140, 240, 74, 152, 156, 220, 82, 336, 86, 220, 240, 184, 94, 276, 140, 280, 204, 260, 106, 336, 220, 308, 228, 232, 118, 600, 122, 248, 336, 190, 260, 528, 134, 340, 276, 560
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
f[p_, e_] := (p + 1)*p^e - p*(p - 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
-
PARI
A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); }; A349132(n) = sumdiv(n,d,A001615(d)*A003958(n/d));
Comments