A349135 Sum of Kimberling's paraphrases (A003602) and its Dirichlet inverse.
2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 8, 12, 1, 0, 6, 0, 3, 16, 12, 0, 2, 9, 14, 12, 4, 0, 4, 0, 1, 24, 18, 24, 5, 0, 20, 28, 3, 0, 6, 0, 6, 26, 24, 0, 2, 16, 17, 36, 7, 0, 16, 36, 4, 40, 30, 0, 8, 0, 32, 36, 1, 42, 10, 0, 9, 48, 12, 0, 5, 0, 38, 46, 10, 48, 12, 0, 3, 37, 42, 0, 11, 54, 44, 60, 6, 0, 20, 56, 12
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Mathematica
k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; d[1] = 1; d[n_] := d[n] = -DivisorSum[n, d[#]*k[n/#] &, # < n &]; a[n_] := k[n] + d[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
-
PARI
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A003602(n) = (1+(n>>valuation(n,2)))/2; v349134 = DirInverseCorrect(vector(up_to,n,A003602(n))); A349134(n) = v349134[n]; A349135(n) = (A003602(n)+A349134(n)); -
PARI
A349135(n) = if(1==n,2,-sumdiv(n, d, if(1==d||n==d,0,A003602(d)*A349134(n/d)))); \\ (Demonstrates the "cut convolution" formula) - Antti Karttunen, Nov 13 2021
-
PARI
A003602(n) = (1+(n>>valuation(n,2)))/2; memoA349134 = Map(); A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d
A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v))); A349135(n) = (A003602(n)+A349134(n)); \\ Antti Karttunen, Nov 30 2024
Formula
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A003602(d) * A349134(n/d).
For all n >= 1, a(4*n) = A003602(n). - Antti Karttunen, Dec 07 2021
Comments