cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349136 Möbius transform of Kimberling's paraphrases, A003602.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 3, 0, 5, 0, 6, 0, 4, 0, 8, 0, 9, 0, 6, 0, 11, 0, 10, 0, 9, 0, 14, 0, 15, 0, 10, 0, 12, 0, 18, 0, 12, 0, 20, 0, 21, 0, 12, 0, 23, 0, 21, 0, 16, 0, 26, 0, 20, 0, 18, 0, 29, 0, 30, 0, 18, 0, 24, 0, 33, 0, 22, 0, 35, 0, 36, 0, 20, 0, 30, 0, 39, 0, 27, 0, 41, 0, 32, 0, 28, 0, 44, 0, 36, 0, 30, 0, 36
Offset: 1

Views

Author

Antti Karttunen, Nov 13 2021

Keywords

Crossrefs

Agrees with A055034 on odd arguments.
Cf. A000004, A072451 (even and odd bisection).
Cf. also A347233, A349127, A349137.

Programs

  • Maple
    with(numtheory): a:=proc(n) if n=1 then 1; elif n mod 2 = 0 then 0; else phi(n)/2; fi: end proc: seq(a(n), n=1..60); # Ridouane Oudra, Jul 13 2023
  • Mathematica
    k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, MoebiusMu[#] * k[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
  • PARI
    A349136(n) = if(1==n,1, if(n%2, eulerphi(n)/2, 0));
    
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A349136(n) = sumdiv(n,d,moebius(d)*A003602(n/d));
    
  • Python
    from sympy import totient
    def A349136(n): return totient(n)+1>>1 if n&1 else 0 # Chai Wah Wu, Nov 24 2023

Formula

a(n) = Sum_{d|n} A008683(d) * A003602(n/d).
a(1) = 1, a(n) = A000010(n)/2 for odd n > 1, a(n) = 0 for even n.
For all n >= 1, a(2*n-1) = A055034(2*n-1) = A072451(n).
a(n) = phi(n) - (1/2)*phi(2n), for n>1. - Ridouane Oudra, Jul 13 2023
Sum_{k=1..n} a(k) ~ (1/Pi^2)*n^2. - Amiram Eldar, Jul 15 2023