cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349140 a(n) = Sum_{d|n} d * A348507(n/d), where A348507(n) = A003959(n) - n, where A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 7, 1, 11, 1, 33, 10, 15, 1, 61, 1, 19, 17, 131, 1, 77, 1, 89, 21, 27, 1, 263, 16, 31, 67, 117, 1, 145, 1, 473, 29, 39, 25, 379, 1, 43, 33, 395, 1, 189, 1, 173, 137, 51, 1, 997, 22, 155, 41, 201, 1, 443, 33, 527, 45, 63, 1, 743, 1, 67, 177, 1611, 37, 277, 1, 257, 53, 265, 1, 1541, 1, 79, 187, 285, 37, 321
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A348507 with the identity function, A000027.
Dirichlet convolution of sigma with A348971.

Crossrefs

Cf. also A347130, A348980.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, #*s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349140(n) = sumdiv(n,d,d*A348507(n/d));

Formula

a(n) = Sum_{d|n} d * A348507(n/d).
a(n) = Sum_{d|n} A000203(d) * A348971(n/d).
a(n) = Sum_{d|n} A349141(d).
For all n >= 1, a(n) >= A347130(n) >= A348980(n).
a(n) = A349170(n) - A038040(n). - Antti Karttunen, Nov 15 2021