A349157 Heinz numbers of integer partitions where the number of even parts is equal to the number of odd conjugate parts.
1, 4, 6, 15, 16, 21, 24, 25, 35, 60, 64, 77, 84, 90, 91, 96, 100, 121, 126, 140, 143, 150, 210, 221, 240, 247, 256, 289, 297, 308, 323, 336, 351, 360, 364, 375, 384, 400, 437, 462, 484, 490, 495, 504, 525, 529, 546, 551, 560, 572, 585, 600, 625, 667, 686, 726
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 1: () 4: (1,1) 6: (2,1) 15: (3,2) 16: (1,1,1,1) 21: (4,2) 24: (2,1,1,1) 25: (3,3) 35: (4,3) 60: (3,2,1,1) 64: (1,1,1,1,1,1) 77: (5,4) 84: (4,2,1,1) 90: (3,2,2,1) 91: (6,4) 96: (2,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[100],Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&]
Comments