A357485
Heinz numbers of integer partitions with the same length as reverse-alternating sum.
Original entry on oeis.org
1, 2, 20, 42, 45, 105, 110, 125, 176, 182, 231, 245, 312, 374, 396, 429, 494, 605, 663, 680, 702, 780, 782, 845, 891, 969, 1064, 1088, 1100, 1102, 1311, 1426, 1428, 1445, 1530, 1755, 1805, 1820, 1824, 1950, 2001, 2024, 2146, 2156, 2394, 2448, 2475, 2508, 2542
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
20: {1,1,3}
42: {1,2,4}
45: {2,2,3}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
176: {1,1,1,1,5}
182: {1,4,6}
231: {2,4,5}
245: {3,4,4}
312: {1,1,1,2,6}
374: {1,5,7}
396: {1,1,2,2,5}
These partitions are counted by
A357189.
A000712 up to 0's counts partitions w sum = twice alt sum, ranked
A349159.
A001055 counts partitions with product equal to sum, ranked by
A301987.
A006330 up to 0's counts partitions w sum = twice rev-alt sum, rank
A349160.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[100],PrimeOmega[#]==ats[primeMS[#]]&]
A357486
Heinz numbers of integer partitions with the same length as alternating sum.
Original entry on oeis.org
1, 2, 10, 20, 21, 42, 45, 55, 88, 91, 105, 110, 125, 156, 176, 182, 187, 198, 231, 245, 247, 312, 340, 351, 374, 390, 391, 396, 429, 494, 532, 544, 550, 551, 605, 663, 680, 702, 713, 714, 765, 780, 782, 845, 891, 910, 912, 969, 975, 1012, 1064, 1073, 1078
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
10: {1,3}
20: {1,1,3}
21: {2,4}
42: {1,2,4}
45: {2,2,3}
55: {3,5}
88: {1,1,1,5}
91: {4,6}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
156: {1,1,2,6}
176: {1,1,1,1,5}
For product instead of length we have new, counted by
A004526.
These partitions are counted by
A357189.
A000712 up to 0's counts partitions, sum = twice alt sum, rank
A349159.
A001055 counts partitions with product equal to sum, ranked by
A301987.
A006330 up to 0's counts partitions, sum = twice rev-alt sum, rank
A349160.
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[100],PrimeOmega[#]==ats[Reverse[primeMS[#]]]&]
A349159
Numbers whose sum of prime indices is twice their alternating sum.
Original entry on oeis.org
1, 12, 63, 66, 112, 190, 255, 325, 408, 434, 468, 609, 805, 832, 931, 946, 1160, 1242, 1353, 1380, 1534, 1539, 1900, 2035, 2067, 2208, 2296, 2387, 2414, 2736, 3055, 3108, 3154, 3330, 3417, 3509, 3913, 4185, 4340, 4503, 4646, 4650, 4664, 4864, 5185, 5684, 5863
Offset: 1
The terms and their prime indices begin:
1: ()
12: (2,1,1)
63: (4,2,2)
66: (5,2,1)
112: (4,1,1,1,1)
190: (8,3,1)
255: (7,3,2)
325: (6,3,3)
408: (7,2,1,1,1)
434: (11,4,1)
468: (6,2,2,1,1)
609: (10,4,2)
805: (9,4,3)
832: (6,1,1,1,1,1,1)
931: (8,4,4)
946: (14,5,1)
1160: (10,3,1,1,1)
These partitions are counted by
A000712 up to 0's.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >= 0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000070,
A000290,
A001700,
A028260,
A045931,
A120452,
A195017,
A241638,
A257991,
A257992,
A325698,
A345958,
A349155.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==2*ats[primeMS[#]]&]
A349155
Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.
Original entry on oeis.org
0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1
The terms and corresponding compositions begin:
0: ()
9: (3,1)
130: (6,2)
135: (5,1,1,1)
141: (4,1,2,1)
153: (3,1,3,1)
177: (2,1,4,1)
193: (1,6,1)
225: (1,1,5,1)
2052: (9,3)
2059: (8,2,1,1)
2062: (8,1,1,2)
2069: (7,2,2,1)
2074: (7,1,2,2)
2079: (7,1,1,1,1,1)
2089: (6,2,3,1)
2098: (6,1,3,2)
2103: (6,1,2,1,1,1)
These compositions are counted by
A224274 up to 0's.
A positive unordered version is
A349160, counted by
A006330 up to 0's.
A003242 counts Carlitz compositions.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
Cf.
A000070,
A000346,
A001250,
A001700,
A008549,
A027306,
A058622,
A088218,
A114121,
A120452,
A262977,
A294175,
A345917.
Statistics of standard compositions:
- The compositions themselves are the rows of
A066099.
- Heinz number is given by
A333219.
Classes of standard compositions:
-
stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]
A348617
Numbers whose sum of prime indices is twice their negated alternating sum.
Original entry on oeis.org
1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
Offset: 1
The terms and their prime indices begin:
1: ()
10: (3,1)
39: (6,2)
88: (5,1,1,1)
115: (9,3)
228: (8,2,1,1)
259: (12,4)
306: (7,2,2,1)
517: (15,5)
544: (7,1,1,1,1,1)
620: (11,3,1,1)
783: (10,2,2,2)
793: (18,6)
870: (10,3,2,1)
1150: (9,3,3,1)
1204: (14,4,1,1)
1241: (21,7)
1392: (10,2,1,1,1,1)
1656: (9,2,2,1,1,1)
1691: (24,8)
These partitions are counted by
A001523 up to 0's.
The reverse nonnegative version is
A349160, counted by
A006330 up to 0's.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000984,
A001700,
A028260,
A045931,
A120452,
A195017,
A257991,
A257992,
A262977,
A325698,
A344619,
A345958.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==-2*ats[primeMS[#]]&]
A349154
Numbers k such that the k-th composition in standard order has sum equal to negative twice its alternating sum.
Original entry on oeis.org
0, 12, 160, 193, 195, 198, 204, 216, 240, 2304, 2561, 2563, 2566, 2572, 2584, 2608, 2656, 2752, 2944, 3074, 3077, 3079, 3082, 3085, 3087, 3092, 3097, 3099, 3102, 3112, 3121, 3123, 3126, 3132, 3152, 3169, 3171, 3174, 3180, 3192, 3232, 3265, 3267, 3270, 3276
Offset: 1
The terms and corresponding compositions begin:
0: ()
12: (1,3)
160: (2,6)
193: (1,6,1)
195: (1,5,1,1)
198: (1,4,1,2)
204: (1,3,1,3)
216: (1,2,1,4)
240: (1,1,1,5)
2304: (3,9)
2561: (2,9,1)
2563: (2,8,1,1)
2566: (2,7,1,2)
2572: (2,6,1,3)
2584: (2,5,1,4)
These compositions are counted by
A224274 up to 0's.
A positive unordered version is
A349159, counted by
A000712 up to 0's.
A000346 = even-length compositions with alt sum != 0, complement
A001700.
A003242 counts Carlitz compositions.
A025047 counts alternating or wiggly compositions, complement
A345192.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
Cf.
A000070,
A000984,
A008549,
A027306,
A058622,
A088218,
A114121,
A120452,
A262977,
A294175,
A345917,
A349160.
Statistics of standard compositions:
- The compositions themselves are the rows of
A066099.
Classes of standard compositions:
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,1000],Total[stc[#]]==-2*ats[stc[#]]&]
A349153
Numbers k such that the k-th composition in standard order has sum equal to twice its reverse-alternating sum.
Original entry on oeis.org
0, 11, 12, 14, 133, 138, 143, 148, 155, 158, 160, 168, 179, 182, 188, 195, 198, 204, 208, 216, 227, 230, 236, 240, 248, 2057, 2066, 2071, 2077, 2084, 2091, 2094, 2101, 2106, 2111, 2120, 2131, 2134, 2140, 2149, 2154, 2159, 2164, 2171, 2174, 2192, 2211, 2214
Offset: 1
The terms and corresponding compositions begin:
0: ()
11: (2,1,1)
12: (1,3)
14: (1,1,2)
133: (5,2,1)
138: (4,2,2)
143: (4,1,1,1,1)
148: (3,2,3)
155: (3,1,2,1,1)
158: (3,1,1,1,2)
160: (2,6)
168: (2,2,4)
179: (2,1,3,1,1)
182: (2,1,2,1,2)
188: (2,1,1,1,3)
These compositions are counted by
A262977 up to 0's.
The unreversed negative version is
A349154.
A non-reverse unordered version is
A349159, counted by
A000712 up to 0's.
A003242 counts Carlitz compositions.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
Cf.
A000070,
A000346,
A001250,
A001700,
A008549,
A027306,
A058622,
A088218,
A114121,
A120452,
A294175.
Statistics of standard compositions:
- The compositions themselves are the rows of
A066099.
- Heinz number is given by
A333219.
Classes of standard compositions:
-
stc[n_]:=Differences[ Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,1000],Total[stc[#]]==2*sats[stc[#]]&]
Showing 1-7 of 7 results.
Comments