cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349161 a(n) = A003961(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 5, 9, 7, 5, 11, 9, 25, 7, 13, 45, 17, 11, 35, 81, 19, 25, 23, 3, 55, 13, 29, 9, 49, 17, 25, 99, 31, 35, 37, 27, 65, 19, 77, 225, 41, 23, 85, 21, 43, 55, 47, 39, 175, 29, 53, 405, 121, 49, 95, 153, 59, 25, 91, 99, 23, 31, 61, 15, 67, 37, 275, 729, 17, 65, 71, 19, 145, 77, 73, 45, 79, 41, 245, 207, 143, 85, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Numerator of ratio A003961(n) / A000203(n). Sequence A349162 gives the denominators.
Numerator of ratio A003961(n) / A161942(n). Sequence A348992 gives the denominators.
Both ratios are multiplicative because the constituent sequences are.
No 1's occur as terms after a(2), because for n > 2, sigma(n) < A003961(n). (See A286385).

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 79] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349161(n) = { my(u=A003961(n)); (u/gcd(u,sigma(n))); };
    
  • Python
    from math import prod, gcd
    from sympy import nextprime, factorint
    def A349161(n):
        f = factorint(n).items()
        a = prod(nextprime(p)**e for p, e in f)
        b = prod((p**(e+1)-1)//(p-1) for p, e in f)
        return a//gcd(a,b) # Chai Wah Wu, Mar 17 2023

Formula

a(n) = A003961(n) / A342671(n) = A003961(n) / gcd(A000203(n), A003961(n)).
a(n) = A003961(A349164(n)).