cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349168 Numbers k such that sigma(k) and A003961(k) share a prime power divisor that is not a unitary divisor of A003961(k). Here A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

8, 20, 24, 27, 32, 40, 44, 54, 56, 60, 72, 80, 88, 92, 96, 100, 104, 108, 116, 120, 128, 132, 135, 140, 152, 160, 164, 168, 171, 176, 180, 184, 188, 189, 196, 200, 216, 224, 232, 236, 240, 248, 260, 261, 264, 270, 272, 276, 280, 288, 296, 297, 300, 308, 312, 320, 325, 328, 332, 342, 344, 348, 351, 352, 360, 368, 376
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A342671(k) [= gcd(sigma(k), A003961(k))] and A349161(k) [= A003961(k)/A342671(k)] share a prime factor.
Numbers k for which A349163(k) and A349164(k) are not relatively prime.

Examples

			For n = 8 = 2^3, sigma(8) = 15 = 3*5, while A003961(8) = 3^3 = 27. These share the prime power divisor 3, which however is not a unitary divisor of 27, therefore 8 is included in this sequence.
For n = 32 = 2^5, sigma(32) = 63 = 3^2 * 7, while A003961(32) = 3^5 = 243. These share the prime power divisor 3^2, which however is not a unitary divisor of 243, therefore 32 is included.
For n = 40 = 2^3 * 5, sigma(40) = 90 = 2 * 3^2 * 5, while A003961(40) = 3^3 * 7 = 189. These share the prime power divisor 3^2, which however is not a unitary divisor of 189, therefore 40 is included.
		

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349168(n) = { my(u=A003961(n), x=gcd(u,sigma(n))); (1!=gcd(x,u/x)); };