A349171 a(n) = Sum_{d|n} phi(d) * A003959(n/d), where A003959 is fully multiplicative with a(p) = (p+1), and phi is Euler totient function.
1, 4, 6, 14, 10, 24, 14, 46, 30, 40, 22, 84, 26, 56, 60, 146, 34, 120, 38, 140, 84, 88, 46, 276, 80, 104, 138, 196, 58, 240, 62, 454, 132, 136, 140, 420, 74, 152, 156, 460, 82, 336, 86, 308, 300, 184, 94, 876, 154, 320, 204, 364, 106, 552, 220, 644, 228, 232, 118, 840, 122, 248, 420, 1394, 260, 528, 134, 476, 276
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p*(p + 1)^e - (p - 1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
-
PARI
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; A349171(n) = sumdiv(n,d,eulerphi(d)*A003959(n/d));
Comments