cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349174 Odd numbers k for which gcd(k, A003961(k)) is equal to gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers k for which A322361(k) = A342671(k).
Odd numbers k for which A348994(k) = A349161(k).
Odd numbers k such that A319626(k) = A349164(k).
Odd terms of A336702 form a subsequence of this sequence. See also A349169.
Ratio of odd numbers residing in this sequence, vs. in A349175 seems to slowly decrease, but still apparently stays > 2 for a long time. E.g., for range 2 .. 2^28, it is 95302074/38915653 = 2.4489...

Crossrefs

Cf. A349175 (complement among the odd numbers).
Union of A349176 and A349177.

Programs

  • Mathematica
    Select[Range[1, 169, 2], GCD[#1, #3] == GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349174(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))==gcd(u,n));