A349187 Number of tilings of a 5 X n rectangle using n pentominoes of shapes X, Y, Z.
1, 0, 0, 0, 0, 6, 6, 6, 2, 10, 86, 118, 166, 152, 372, 1394, 2450, 3866, 4946, 10160, 26380, 50770, 86522, 131632, 251150, 548436, 1075036, 1918294, 3205242, 5953962, 11962044, 23255472, 42565706, 74859582, 138078796, 266506794, 511327170, 947685504, 1713749022
Offset: 0
Examples
a(5) = 6: ._________. ._________. |_. ._._| | | |___. ._| | |_| |_. | | |_ |_| | | |_. ._| | | ._| |_. | | ._|_| |_| (2) |_| |___| | (4) |_|_______| |_______|_| . . a(8) = 2: ._______________. |_. | |___. ._| | | | |___. |_|_. | | |___| |_|_. | | | ._| |___. | |_| (2) |_|_______|_|___| . .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3700
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,13,7,8,1,-10,-14,-20,-8,-7,-38,-33,-2,0,-5,-16,-11).
Formula
G.f.: (x^20 +6*x^19 +5*x^18 +7*x^15 +14*x^14 +7*x^13 +4*x^10 +2*x^9 +x^8 -2*x^7 -x^6 -7*x^5 -3*x^4 +1) / (11*x^20 +16*x^19 +5*x^18 +2*x^16 +33*x^15 +38*x^14 +7*x^13 +8*x^12 +20*x^11 +14*x^10 +10*x^9 -x^8 -8*x^7 -7*x^6 -13*x^5 -3*x^4 +1).