A349195 a(n) is the X-coordinate of the n-th point of the R5 dragon curve; A349196 gives Y-coordinates.
0, 1, 1, 0, 0, 1, 1, 0, 0, -1, -1, -2, -2, -1, -1, -2, -2, -3, -3, -4, -4, -3, -3, -4, -4, -3, -3, -4, -4, -5, -5, -6, -6, -5, -5, -6, -6, -5, -5, -4, -4, -5, -5, -4, -4, -5, -5, -6, -6, -7, -7, -8, -8, -7, -7, -8, -8, -7, -7, -6, -6, -5, -5, -6, -6, -5, -5
Offset: 0
Keywords
Examples
The R5 dragon curve starts as follows: +-----+ 24| 25 | | +-----+ +-----+ +-----+ 23 22| 11| 10| 7| 6| | | | | | 21| 12| 9| 8| | +-----+-----+-----+-----+-----+ 20| 17| 16| 13| 4| 5 | | | | | | | | | | +-----+ +-----+ +-----+ 19 18 15 14 3 2| | | +-----+ 0 1 - so a(0) = a(3) = a(4) = a(7) = a(8) = 0, a(1) = a(2) = a(5) = a(6) = 1, a(9) = a(10) = a(13) = a(14) = -1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..3125
- Joerg Arndt, Matters Computational (The Fxtbook), section 1.31.5 Dragon curves based on radix-R counting.
- Kevin Ryde, Iterations of the R5 Dragon Curve, see index "point".
- Rémy Sigrist, Colored representation of the first 1 + 5^9 points of the R5 dragon curve (where the hue is function of the number of steps from the origin)
- Rémy Sigrist, PARI program for A349195
- Index entries for sequences related to coordinates of 2D curves
Programs
-
PARI
See Links section.
Formula
a(5^k) = A006495(k) for any k >= 0.
Comments