cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363154 Triangle read by rows. The Hadamard product of A173018 and A349203.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 4, 1, 0, 12, 33, 22, 3, 0, 10, 52, 66, 26, 2, 0, 60, 570, 1208, 906, 228, 10, 0, 105, 1800, 5955, 7248, 3573, 600, 15, 0, 280, 8645, 42930, 78095, 62476, 21465, 2470, 35, 0, 252, 14056, 102256, 264702, 312380, 176468, 43824, 3514, 28, 0
Offset: 0

Views

Author

Peter Luschny, May 21 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0]   1;
[1]   1,    0;
[2]   2,    1,     0;
[3]   3,    4,     1,     0;
[4]  12,   33,    22,     3,     0;
[5]  10,   52,    66,    26,     2,     0;
[6]  60,  570,  1208,   906,   228,    10,    0;
[7] 105, 1800,  5955,  7248,  3573,   600,   15,  0;
[8] 280, 8645, 42930, 78095, 62476, 21465, 2470, 35, 0;
		

Crossrefs

Cf. A173018, A349203, A002944 (column 0), A099946, A362994 (alternating row sums), A362990 (row sums).

Programs

  • Maple
    A173018 := (n, k) -> combinat[eulerian1](n, k):
    A349203 := (n, k) -> ilcm(seq(binomial(n, j), j = 0..n)) / binomial(n, k):
    A363154 := (n, k) -> A173018(n, k) * A349203(n, k):
    for n from 0 to 8 do seq(A363154(n, k), k = 0..n) od;

Formula

T(n, k) = A173018(n, k) * A349203(n, k).
Sum_{k=0..n} (-1)^k * T(n, k) = lcm(1, 2, ..., n+1)*Bernoulli(n, 1) = A362994(n).

A362990 Row sums of A363154.

Original entry on oeis.org

1, 1, 3, 8, 70, 156, 2982, 19296, 216396, 917480, 47847580, 250815120, 18724750980, 116905717320, 788402337660, 11422960203648, 1503958432951464, 12400297557081840, 2060467159019459400, 19050402239258292000, 185663459342909159640, 1902329957427442126320
Offset: 0

Views

Author

Peter Luschny, May 22 2023

Keywords

Crossrefs

Programs

  • Maple
    A362990 := n -> add(ilcm(seq(binomial(n, j), j = 0..n)) * combinat[eulerian1](n, k) / binomial(n, k), k = 0.. n): seq(A362990(n), n = 0..21);
Showing 1-2 of 2 results.