cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362994 a(n) = lcm(1, 2, ..., n+1) * Bernoulli(n, 1). Alternating row sums of A362995 and A363154.

Original entry on oeis.org

1, 1, 1, 0, -2, 0, 10, 0, -84, 0, 2100, 0, -91212, 0, 420420, 0, -86894808, 0, 12796881240, 0, -123176186952, 0, 33154044803880, 0, -2317852458291480, 0, 114488177740536600, 0, -63580025062953158760, 0, 43435207772044760997000, 0, -2182849703429651931795120
Offset: 0

Views

Author

Peter Luschny, May 14 2023

Keywords

Crossrefs

Cf. A362995 (alternating row sum), A363154 (alternating row sum), A003418 (lcm), A164555/A027642 (Bernoulli), A362991 (column 0).

Programs

  • Maple
    A362994 := n -> ilcm(seq(i + 1, i = 0..n)) * bernoulli(n, 1):
    seq(A362994(n), n = 0..32);
  • Mathematica
    A362994[n_]:=LCM@@Range[n+1]BernoulliB[n, 1];Array[A362994,50,0] (* Paolo Xausa, Aug 09 2023 *)
  • PARI
    a(n) = lcm([1..n+1])*subst(bernpol(n), 'x, 1); \\ Michel Marcus, Aug 09 2023

Formula

a(n) = LCM(n) * Sum_{j=0..n} (-1)^(n - j) * j! * Stirling2(n, j) / (j + 1), where LCM(n) = lcm(i + 1, i = 0..n).

A362990 Row sums of A363154.

Original entry on oeis.org

1, 1, 3, 8, 70, 156, 2982, 19296, 216396, 917480, 47847580, 250815120, 18724750980, 116905717320, 788402337660, 11422960203648, 1503958432951464, 12400297557081840, 2060467159019459400, 19050402239258292000, 185663459342909159640, 1902329957427442126320
Offset: 0

Views

Author

Peter Luschny, May 22 2023

Keywords

Crossrefs

Programs

  • Maple
    A362990 := n -> add(ilcm(seq(binomial(n, j), j = 0..n)) * combinat[eulerian1](n, k) / binomial(n, k), k = 0.. n): seq(A362990(n), n = 0..21);
Showing 1-2 of 2 results.