A349230 Numbers k such that k and k+3 are consecutive squarefree numbers.
7, 23, 26, 43, 62, 74, 79, 115, 119, 134, 146, 151, 167, 170, 174, 187, 206, 223, 259, 274, 278, 287, 295, 314, 323, 331, 359, 362, 367, 374, 386, 403, 439, 458, 494, 506, 511, 523, 527, 530, 538, 566, 574, 583, 619, 623, 635, 638, 655, 674, 691, 710, 727, 734
Offset: 1
Keywords
Examples
7 is a term since 7 and 7 + 3 = 10 = 2*5 are squarefree, and 7 + 1 = 8 = 2^3 and 7 + 2 = 9 = 3^2 are not.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 907-929; arXiv preprint, arXiv:1912.04972 [math.NT], 2019-2020.
Programs
-
Mathematica
Select[Range[750], Boole[SquareFreeQ /@ (# + {0, 1, 2, 3})] == {1, 0, 0, 1} &]
-
PARI
isok(k) = issquarefree(k) && !issquarefree(k+1) && !issquarefree(k+2) && issquarefree(k+3); \\ Michel Marcus, Nov 11 2021
Comments