A349234 Numbers k such that k and k+3 are consecutive cubefree numbers.
79, 134, 295, 342, 350, 374, 511, 566, 623, 727, 782, 943, 998, 1159, 1214, 1430, 1591, 1623, 1646, 1807, 1862, 2023, 2078, 2239, 2294, 2374, 2399, 2455, 2510, 2623, 2671, 2726, 2887, 2942, 3086, 3103, 3158, 3319, 3374, 3428, 3535, 3590, 3623, 3751, 3806, 3967
Offset: 1
Keywords
Examples
79 is a term since 79 and 79 + 3 = 82 = 2*41 are cubefree, and 79 + 1 = 80 = 2^4*5 and 79 + 2 = 81 = 3^4 are not.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 907-929; arXiv preprint, arXiv:1912.04972 [math.NT], 2019-2020.
Programs
-
Mathematica
cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Select[Range[4000], Boole[cubeFreeQ /@ (# + Range[0, 3])] == {1, 0, 0, 1} &] SequencePosition[Table[If[Max[FactorInteger[n][[All,2]]]<3,1,0],{n,4000}],{1,0,0,1}][[All,1]] (* Harvey P. Dale, May 08 2022 *)
Comments