A349258 a(n) is the number of prime powers (not including 1) that are infinitary divisors of n.
0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 3, 1, 3, 2, 2, 2, 2, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 4, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 4, 3
Offset: 1
Examples
12 has 4 infinitary divisors, 1, 3, 4 and 12. Two of these divisors, 3 and 4 = 2^2 are prime powers. Therefore a(12) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_,e_] := 2^DigitCount[e, 2, 1] - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a,100]
-
PARI
A349258(n) = if(1==n,0,vecsum(apply(x->(2^hammingweight(x))-1,factor(n)[,2]))); \\ Antti Karttunen, Nov 12 2021
Formula
Additive with a(p^e) = 2^A000120(e) - 1.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.28135949730844648114..., where f(x) = -(x+1) + (1-x) * Product_{k>=0} (1 + 2*x^(2^k)). - Amiram Eldar, Sep 29 2023
Extensions
Wrong comment removed by Amiram Eldar, Sep 22 2023
Comments