A349277 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of permutations p of [n] such that Sum_{j=1..n} j/p(j) is an integer and p(n) = k.
1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 8, 4, 4, 2, 2, 0, 2, 0, 8, 18, 18, 14, 18, 0, 14, 0, 0, 22, 113, 130, 102, 135, 108, 122, 0, 314, 0, 104, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1128, 1152, 1166, 1130, 1078, 1334, 1182, 0, 1734, 3390, 1226, 0, 1128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14520
Offset: 1
Examples
Triangle begins: 1; 0, 1; 0, 0, 1; 1, 0, 0, 1; 0, 0, 0, 0, 2; 1, 1, 2, 2, 0, 2; 0, 0, 0, 0, 0, 0, 8; 4, 4, 2, 2, 0, 2, 0, 8; 18, 18, 14, 18, 0, 14, 0, 0, 22; 113, 130, 102, 135, 108, 122, 0, 314, 0, 104; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1128;
Crossrefs
Row sum gives A073090.
Programs
Formula
If n is prime, T(n,k) = 0 for 1 <= k <= n-1.
T(n,n) = A073090(n-1).