A349280 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k rounds; n >= 2, 1 <= k <= floor(n/2).
2, 3, 8, 12, 30, 60, 144, 330, 120, 840, 2100, 1260, 5760, 15344, 11760, 1680, 45360, 127008, 113400, 30240, 403200, 1176120, 1169280, 428400, 30240, 3991680, 12054240, 13000680, 5821200, 831600, 43545600, 135508032, 155923680, 80415720, 16632000, 665280
Offset: 2
Examples
Triangle starts: [2] 2; [3] 3; [4] 8, 12; [5] 30, 60; [6] 144, 330, 120; [7] 840, 2100, 1260; [8] 5760, 15344, 11760, 1680; [9] 45360, 127008, 113400, 30240; ... For n = 4, there are 8 ways to make one round and 12 ways to make two rounds.
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
Links
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Crossrefs
Programs
-
Maple
ser := series((1 - x)^(-x*t), x, 20): xcoeff := n -> coeff(ser, x, n): T := (n, k) -> n!*coeff(xcoeff(n), t, k): seq(seq(T(n, k), k = 1..iquo(n,2)), n = 2..12); # Peter Luschny, Nov 13 2021 # second Maple program: A349280 := (n,k) -> binomial(n,k)*k!*abs(Stirling1(n-k,k)): seq(print(seq(A349280(n,k), k=1..iquo(n,2))), n=2..12); # Mélika Tebni, May 03 2023
-
Mathematica
f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t), {x, 0, n}, {t, 0, k}] Table[f[k, n], {n, 2, 12}, {k, 1, Floor[n/2]}]
Formula
G.f.: (1 - x)^(-x*t).
T(n, k) = binomial(n, k)*k!*|Stirling1(n-k, k)|. - Mélika Tebni, May 03 2023
The above formula can also be written as T(n, k) = A008279(n, k)*A331327(n, k) or as T(n, k) = A265609(n + 1, k)*A331327(n, k). - Peter Luschny, May 03 2023
Comments